skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matson, Paul_G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Coccolithophores are an important group of calcifying marine phytoplankton. Although coccolithophores are not silicified, some species exhibit a requirement for Si in the calcification process. These species also possess a novel protein (SITL) that resembles the SIT family of Si transporters found in diatoms. However, the nature of Si transport in coccolithophores is not yet known, making it difficult to determine the wider role of Si in coccolithophore biology. Here, we show that coccolithophore SITLs act as Na+‐coupled Si transporters when expressed in heterologous systems and exhibit similar characteristics to diatom SITs. We find thatCbSITLfromCoccolithus braarudiiis transcriptionally regulated by Si availability and is expressed in environmental coccolithophore populations. However, the Si requirement ofC. braarudiiand other coccolithophores is very low, with transport rates of exogenous Si below the level of detection in sensitive assays of Si transport. As coccoliths contain only low levels of Si, we propose that Si acts to support the calcification process, rather than forming a structural component of the coccolith itself. Si is therefore acting as a micronutrient in coccolithophores and natural populations are only likely to experience Si limitation in circumstances where dissolved silicon (DSi) is depleted to extreme levels. 
    more » « less